If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+13n=0
a = 5; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·5·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*5}=\frac{-26}{10} =-2+3/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*5}=\frac{0}{10} =0 $
| 2x+1-3=-2x-5 | | 4x^2-6x-2=x-7 | | (2/3x+10)2+(1/3x+5)2)=90 | | G(2)=2t-5 | | 7x=15-30x2 | | 5+7y=5(1+6y) | | 8x-32/3=4x | | 29=4h-6-9h-5 | | -61-2y=20+7y | | 35x÷35=20÷35 | | -80=-16+8x | | 2x+15=1x-15 | | 3p+4p+3=(4p-2) | | 2.89+0.25x=4.39 | | -7+n=-35 | | -20=-5(q+4)-4q | | 1.25a+10=30 | | (x-2)^2+((-2x+15)-1)^2=25 | | 39+x=-3(4-6x) | | 14+5x=4(-7-5)-x | | 7a-5=2a | | 5(x=7)=2(x=4) | | x/2+3=2.5x-2 | | (2/3x+10)x(1/3x+5)=90 | | 4(8×2p)-6=18 | | 2x+10+3x-2+.5x+28=180 | | 2/4x-5=17 | | 7a-5=2a1 | | -12-4x=-3(2+x) | | 7x-152=43-6x | | x÷-1.5=21 | | 5x+3=8(x-3 |